Lecture #6

Engineering Approach for Analytical Electromagnetic Modelling of THz Metal Structures

The main objective of this lecture is to teach a useful tool for enabling a student to derive analytical expressions for a number of electromagnetic problems relating to THz metal structures. The traditional approach when using the classical relaxation-effect model can be mathematically cumbersome and not insightful. This lecture briefly introduces various interrelated electrical engineering concepts as tools for characterizing the intrinsic frequency dispersive nature of normal metals at room temperature. This Engineering Approach dramatically simplifies the otherwise complex analysis and allows for a much deeper insight to be gained into the classical relaxationeffect model. Problems with worked-though solutions will be given in class.

Imperial College ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン准教授 London

Radio Frequency Engineering Lecture #6 Engineering Approach

- **O** Single metal planar shield
- Ger Conclusions

Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

#1 Line Modelling

Electromagnetic Characterisation of Homogenous Materials

$$\eta_{I} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}} = \sqrt{\frac{(\omega\mu_{o}\mu_{r}'') + j\omega(\mu_{o}\mu_{r}')}{(\sigma' + \omega\varepsilon_{o}\varepsilon_{r}'') + j\omega(\frac{-\sigma''}{\omega} + \varepsilon_{o}\varepsilon_{r}')}} \quad [\Omega]$$

$$\gamma = \frac{j\omega\mu}{\eta_{I}} = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)} = \sqrt{\left[(\omega\mu_{o}\mu_{r}^{\prime\prime}) + j\omega(\mu_{o}\mu_{r}^{\prime\prime})\right]\left[(\sigma' + \omega\varepsilon_{o}\varepsilon_{r}^{\prime\prime}) + j\omega\left(\frac{-\sigma''}{\omega} + \varepsilon_{o}\varepsilon_{r}^{\prime\prime}\right)\right]} \quad [m^{-1}]$$

Compare vector Helmholtz equations (for an unbounded plane wave in one-dimensional space) with those of the telegrapher's equations.

Imperial College ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン准教授 London

1

Intrinsic Modelling for Normal Metals at Room Temperature Generic equations: $Z_{S} \equiv R_{S} + jX_{S} = \sqrt{\frac{j\omega\mu_{0}\mu_{r}}{\sigma + j\omega\varepsilon_{o}}} \cong \sqrt{\frac{j\omega\mu_{0}\mu_{r}}{\sigma}} \quad \text{with} \quad \omega < 10^{15} \ rad/s$ $\gamma_{S} \equiv \alpha_{S} + j\beta_{S} = \frac{j\omega\mu_{0}\mu_{r}}{Z_{S}} = \sqrt{j\omega\mu_{o}\mu_{r}\sigma} \quad and \quad \delta_{S} = \frac{1}{\Re\{\gamma_{S}\}} = \frac{1}{\alpha_{S}} \quad and \quad \delta_{c} \equiv \delta_{c}' - j\delta_{c}'' = \frac{1}{\gamma_{S}}$

Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授 Radio Frequency Engineering Lecture #6 Engineering Approach

Classical relaxation-effect model:

$$Zo_{R} = \sqrt{\frac{R_{R} + j\omega L_{R}}{G_{R} + j\omega C_{R}}} \qquad \gamma_{R} \equiv \frac{R_{R} + j\omega L_{R}}{Zo_{R}} = \sqrt{(R_{R} + j\omega L_{R})(G_{R} + j\omega C_{R})}$$

$$Zo_{R} \Rightarrow \eta_{IR} \cong \sqrt{\frac{j\omega\mu_{o}}{\left[\frac{\sigma_{o}}{1 + (\omega\tau)^{2}}\right] + j\omega\left[\frac{-\tau\sigma_{o}}{1 + (\omega\tau)^{2}}\right]}} \Rightarrow Z_{SR} \equiv (R_{SR} + jX_{SR})$$

$$R_{SR} \equiv \Re\{Z_{SR}\} = \frac{R_{So}}{(1 + \xi\omega\tau)} \quad L_{SR} \equiv \frac{\Im\{Z_{SR}\}}{\omega} = \frac{R_{So}}{\omega}(1 + \xi\omega\tau)$$

$$\xi = \sqrt{\sqrt{u^{-4} + u^{-2}}} + u^{-1} - u^{-1} \qquad u = (\omega\tau)$$
Imperial College ステファン・ルシズイン Stepan Lucyszyn
 $\chi \sim \sqrt{y\tau} + \pi \sqrt{y\gamma} + \pi \sqrt{y\gamma} + \pi \sqrt{y\gamma}$

Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授

Propagation Delay Per Unit Wavelength

$$\tau_{pR} = \frac{l}{v_{pR}} \rightarrow \frac{\lambda_R}{v_{pR}} = \frac{1}{f} \quad \left[s / \lambda_R \right] \quad where \quad \lambda_R = \frac{2\pi}{\Im\{\gamma_R\}} \quad ; \quad v_{pR} = \frac{\omega}{\Im\{\gamma_R\}}$$
$$\gamma_R = \sqrt{j\omega L_R (G_R + j\omega C_R)} = \sqrt{j\omega L_R \left(G_R - j\frac{1}{\omega L_{SHUNT_R} \Delta z^2} \right)} \equiv \sqrt{j\omega \mu \sigma_R}$$

Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

Distributed-element parameters for the
classical relaxation-effect model

$$R_R = 0$$
 ; $L_R = \mu_o$; $G_R = \frac{\sigma_o}{1 + (\omega \tau)^2}$; $C_R = \frac{-\tau \sigma_o}{1 + (\omega \tau)^2} + \varepsilon_o \approx \frac{-\tau \sigma_o}{1 + (\omega \tau)^2}$
Distributive shunt inductance
 $L_{SHUNT_R} \equiv \frac{-1}{\omega^2 C_R \Delta z^2} = \frac{1 + (\omega \tau)^2}{\omega^2 \tau \sigma_o \Delta z^2}$ [H/m]

UT-PS

Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授 Radio Frequency Engineering Lecture #6 Engineering Approach

<u>Circuit-based</u> Simulation Results for Gold at Room Temperature

with $\omega \tau = 1$, depth $\mathbf{l} = \lambda_{\mathbf{R}}$, $\Delta z = \lambda_{\mathbf{R}} / 400 = 1.067$ [nm]

Equivalent Transmission	Elementary Lumped-element Circuit Values					Z _{IN} [Ω] (Theory: 0.4608+j1.1124)	τ_{pR}
Line model	$R_R \cdot \Delta z$ [Ω]	L _R ∙∆z [fH]	G _R ∙∆z [mS]	С _R .Дz [fF]	L _{SHUNT_R} ∙∆z [pH]	$Z_T = Z_{SR}$	(Theory: 170:494)
Extracted model	_	1.341	24.1	-0.654	_	0.4607 + j1.137	170.491
Alternative Extracted model		1.341	24.1		1.126	0.4607 + j1.137	170.491

#2 Kinetic Inductance

$L_{sp} = L_{so} + \xi L_{\nu} = L_{so} (1 + \xi \omega \tau) \quad [H / square]$

Kinetic inductance is created from the inertial mass of a mobile charge carrier distribution within an alternating electric field (i.e. classical electrodynamics).

Radio Frequency Engineering Lecture #6 Engineering Approach

Radio Frequency Engineering

Lecture #6 Engineering Approach

Radio Frequency Engineering Lecture #6 Engineering Approach 10⁰

Lecture #6 Engineering Approach

Radio Frequency Engineering Lecture #6 Engineering Approach

$$Q_{c} = \frac{|X_{c}|}{R_{c}}$$

$$Q_{c} = \frac{|X_{c}|}{\Re\{n\}} = \frac{\Re\{\gamma\}}{\Im\{\gamma\}} = \frac{\Im\{Z_{s}\}}{\Re\{Z_{s}\}} \Rightarrow \begin{cases} \equiv 1 & \text{for } Q_{co} \\ > 1 & \text{for } Q_{cR} \end{cases}$$

$$Q_{m} = \left|\frac{1-Q_{c}^{2}}{2Q_{c}}\right| \text{ and } Q_{c} = Q_{m} + \sqrt{1+Q_{m}^{2}}$$

Classical relaxation-effect model:

$$Q_{mR} \equiv (\omega \tau)$$
 $Q_{cR} \equiv (1 + \xi Q_{mR})^2$

Radio Frequency Engineering Lecture #6 Engineering Approach#4 Complex Skin Depth
Complex Skin Depth: $\delta_c = \frac{1}{\gamma} \equiv \delta_c' - j \delta_c''[m]$ $Q_c = \frac{\Re\{\delta_c\}}{\Im\{\delta_c\}}$
$\hat{J}_c(0) \; [\mathrm{A}/\mathrm{m}^2] = rac{\hat{J}_S \; [\mathrm{A}/\mathrm{m}]}{\delta_c \; [\mathrm{m}]}$
$Z_{SR} = j\omega\mu \delta_{cR} = \omega\mu \left(\Im\{\delta_{cR}\} + j\Re\{\delta_{cR}\}\right)$ and $v_{pR} = \frac{\omega}{\beta_R} = \omega \frac{ \delta_{cR} ^2}{\Im\{\delta_{cR}\}} [\text{m/s}]$
$L_{SR} = \mu \Re\{\delta_{cR}\} \text{ and } Q_{cR} = \frac{\Re\{\delta_{cR}\}}{\Im\{\delta_{cR}\}} = \left(\frac{\Re\{\delta_{cR}\}}{\Re\{\delta_{co}\}}\right)^2$
$Q_{uR}(\omega_{oR}) _{TE_{101}} \cong \frac{Internal \ Volume \ [m^3]}{Internal \ Surface \ Area \ [m^2] \cdot \Im\{\delta_{cR}(\omega_{oR})\}[m]}$
Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授

Classical relaxation-effect model: $\delta_{cR} = \Re\{\delta_{co}\}\left(\sqrt{Q_{cR}} - j\frac{1}{\sqrt{Q_{cR}}}\right) = \Im\{\delta_{cR}\}(Q_{cR} - j)$ c.f. $Z_{SR} = \Re\{Z_{So}\}\left(\frac{1}{\sqrt{Q_{cR}}} + j\sqrt{Q_{cR}}\right) = \Re\{Z_{SR}\}(1 + jQ_{cR})$ mperial College ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン准教授

When the terminating impedance is equal to the complex conjugate of the characteristic impedance of the transmission line:

$$S_{11} = S_{22} = \frac{-je^{-2\gamma l}Q_c(1+jQ_c)}{1+(e^{-\gamma l}Q_c)^2} \cong -je^{-2\gamma l}Q_c\left(1+jQ_c\right) \quad \text{with} \quad \Re\{\gamma\}l > 2.3$$

$$S_{21} = S_{12} = \frac{e^{-\gamma l} \left(1 + jQ_c\right)}{1 + \left(e^{-\gamma l}Q_c\right)^2} \cong e^{-\gamma l} (1 + jQ_c) \quad \text{with} \quad \Re\{\gamma\}l > 2.3$$

Imperial College London ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

Comparison of modelled parameters for gold at room temperature, at 5.865 THz, determined from theory, direct ABCD parameter matrix calculations and synthesized equivalent transmission line models using commercial circuit simulation software

Parameters for		Synthesized Transmission Line				
$l = \lambda_R, \ \boldsymbol{\omega\tau} = 1, \ \boldsymbol{Z}_T = \boldsymbol{Z}^*_{SR}$	Theory	ABCD F Matrix C	arameter alculations	Microwave Office®		
No. of Sections, N		400 800		400	800	
$Z_{SR}[\mathbf{\Omega}]$	0.46079043 +j1.11244650	0.46079964 +j1.11246875	0.46079043 +j1.11244650			
$\gamma_R \lambda_R [\lambda_R^{-1}]$	15.1689 +j6.2832	15.1681 -j0.0013	15.1685 -j0.0004			
S _{II}	0	0.0006 +j0.0271	0.0002 +j0.0135	0.0006 +j0.0270	0.0001 +j0.0133	
Return Loss [dB]	-247.51	-31.35	-37.41	-31.37	-36.9	
$S_{II} = e^{-2\pi (1+\sqrt{2})}.$ [1+j(1+\sqrt{2})]·10 ⁷	2.583 +j6.237	2.579 +j6.242	2.582 +j6.240	2.564 +j6.238	2.567 +j6.239	
G _{MAX} [dB]	-123.4126	-123.4093	-123.4099	-123.41	-123.4	
Absorption Loss [dB]	-131.756	-131.748	-131.752	-131.9	-131.9	
$\forall S_{II} = \tan^{-1}(1 + \sqrt{2})[^{\circ}]$	67.50	67.55	67.52	67.58	67.56	

New Waveguide Standard for Terahertz Frequencies Why New Standard ? No extension of industry standards above 325 GHz (WR-3) No compatibility among hardware Impractical transitions Defined in inches, rounding errors 1.5 THz Frequency Multiplier 5 THz horns and Chain (JPL)

John Ward, JPL 2006

Imperial College London ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

Proposed air-filled MPRWG and cavity resonator definitions and specifications

ISO 497 Proposed Preferred Frequency Metric Band Size Designation (jum)		Internal Dimensions a×b (jum ²)	TE _D -mode Ideal Cutoff Frequency fc	Lower-Band Frequency Factor f_L/f_C	Mid-Band Frequency $f_{c} = 1.55 f_{c}$ (THz)	Upper-Band Frequency Factor f_0 / f_c	Useful Frequency Range $f_I \rightarrow f_U$ (THz)	$\label{eq:linear} \begin{split} \mathbf{TE}_{101} \cdot \mathbf{mode} \\ \mathbf{Ideal Cavity} \\ \mathbf{Resonance} \\ \mathbf{Frequency} \\ f_{\mathbf{101_dea'}} = \sqrt{1.5}f_{0} \end{split}$		
В	i	JIPL.	Our		(THZ)					(THz)
20'	6	200	/	200×100	0.75	1.20	1.162	1.93	0.90 →1 .45	0.919
20'	4	160		160×80	0.94	1.23	1.452	1.92	1.15→1.80	1.148
20'	2	125		12.5×62.5	1.20	1.21	1.860	1.92	1.45→2.30	1.470
20'	0	100	/	100×50	1.50	1.20	2.325	1.93	1.80→2.90	1.837
40	35		75	75×32.5	2.00	1.20	3.100	1.90	2.40→4.00	2.449
20'	14		50	50×25	3.00	1.20	4.650	1.90	3.60 ×5.00	3.674
20'	10		32	32×16	4.68	1.20	7.260	1.90	5.62→8.90	5.732
20'	8	/	25	25×12.5	6.00	1.20	9.300	1.90	7.20→12.00	7.348

 Imperial College
 ステファン・ルシズィン
 Stepan Lucyszyn

 London
 インペリアル・カレッジ・ロンドン准教授
 London

Radio Frequency Engineering Lecture #6 Engineering Approach

New Waveguide Standard for Terahertz Frequencies: **ISO 497 Preferred Metric Sizes**

- Widely used global industry standard ISO 497 Preferred Metric Sizes
- Logarithmic scale
- Infinitely extendable
- Repeats every decade
- Decision tree with range of coarse and fine spacing

st Choice	2nd Choice	3rd Choice
1		11
4.0	1.25	1.4
1.6	2	1.8
2.5	2	2.2
	2.2	2.8
4	3.2	3.6
4	5	4.5
63	5	5.6
0.5	0	7.1
10	0	9
rszyn 💦	UT D	

Imperial College ステファン・ルシズィン Stepan Lucy インペリアル・カレッジ・ロンドン准教授 London

UI-PSU

Radio Frequency Engineering Lecture #6 Engineering Approach

Radio Frequency Engineering Lecture #6 Engineering Approach

Radio Frequency Engineering Lecture #6 Engineering Approach

Radio Frequency Engineering

Lecture #6 Engineering Approach

Radio Frequency Engineering Lecture #6 Engineering Approach

$$\lambda_{I_mml} = \frac{c}{f_{I_mml}} \qquad f_{I_mml} = \frac{c}{2}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{l}{d}\right)^2} \equiv \frac{\omega_{I_mml}}{2\pi}$$
$$\lambda_{I_101} = \frac{2ad}{\sqrt{a^2 + d^2}} = \begin{cases} \sqrt{2} \ a \ for \ half - height \ i.e. \ d = a = 2b\\ \sqrt{8/3} \ a \ most \ common \ d = \sqrt{2} \ a = 2\sqrt{2} \ b \end{cases}$$
$$\begin{cases} Volume/Ara \ for \ d = a\\ a/6 \ for \ cube \ i.e. \ d = a = b \end{cases}$$

$$\psi_{101} = \frac{abd(a^2 + d^2)}{2[2b(a^3 + d^3) + ad(a^2 + d^2)]} = \begin{cases} a/8 & \text{for half-height i.e. } d = a = 2b \\ 3a/[2(\sqrt{2} + 10)] & \text{most common i.e. } d = \sqrt{2}a = 2\sqrt{2}b \end{cases}$$

mperial College ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン推動授

Over-simplified Solution (O. Klein et al.,1993, and M. Dressel & G. Gruner, 2002) $\omega_I \longrightarrow R_s(\omega_I) \longrightarrow Q_U(\omega_I) = \frac{\omega_I \Gamma}{R_s(\omega_I)} \longrightarrow \tilde{\omega}_o \sim \omega_I + j \frac{\omega_I}{2Q_u(\omega_I)}$ **Simplified Solution** (J. C. Salter, 1946) $\tilde{\omega}_o \sim (\omega_I + \Delta \omega_I) + j \frac{\omega_I}{2Q_u(\omega_I)}$ where $\Delta \omega_I$ is due to perturbation

Radio Frequency Engineering Lecture #6 Engineering Approach

- HFSS[™] current versions (v.10 & 11) cannot accurately predict the performance of structures operating at terahertz frequencies
- Intrinsic dispersion models: Classical skin-effect & simple relaxation-effect inflate the attenuation. Therefore, extrinsic loss effects (e.g. surface roughness) may be underestimated

Radio Frequency Engineering Approach THz Metal Shielding RF metal shielding is found in many applications; ranging from: • Construction of high isolation subsystem partitioning walls

- Efficient quasi-optical components (e.g. planar mirrors and parabolic reflectors for open resonators and antennas)
- Creating guided-wave structures that have (near-)zero field leakage (e.g. metal-pipe rectangular waveguides and associated closed cavity resonators)
- Embedding ground planes within compact 3D multi-layer architectures.

 Imperial College
 ステファン・ルシズィン Stepan Lucyszyn

 London
 インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

Radio Frequency Engineering Lecture #6 Engineering Approach

Z Metal shields should be made as thin as possible, while meeting the minimum values for figures of merit within the intended bandwidth of operation, in order to reduce weight and cost.

✓ For reasons of structural integrity, thin metal shielding can be deposited onto either a solid plastic/ceramic or even honeycomb supporting wall.

✓ Thin metal shielding embedded between dielectric layers (e.g. to create conformal ground planes or partition walls) can avoid issues of poor topography when integrating signal lines within 3D multi-layered architectures.

Shielding effectiveness, return loss and absorptance (or absorptivity) are important figures of merit that are quoted to quantify the ability to shield electromagnetic radiation.

An electrical engineering approach, which can include network analysis and the synthesis of predictive equivalent transmission line models, can accurately solve specific EM problems.

Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

 $\left|e^{-\gamma T}\rho_{1}\right| < 1$

Radio Frequency Engineering Lecture #6 Engineering Approach

Approximation error : < 0.6% up to $a_R = 10$, frequency less than 12 THz

$$S_{11o} = \rho_{1o} \cdot \left[\frac{1 - e^{-2a_o\sqrt{2j}}}{1 - \left(e^{-a_o\sqrt{2j}}\rho_{1o}\right)^2} \right] = \frac{\sinh\left(a_o\sqrt{2j}\right)}{\sinh\left[a_o\sqrt{2j} - \ln\left(\frac{\sqrt{2j} - k_o}{\sqrt{2j} + k_o}\right)\right]}$$

 Imperial College
 ステファン・ルシズィン
 Stepan Lucyszyn

 London
 インペリアル・カレッジ・ロンドン准教授

yn 🔖 UT-PSC 🔧

Radio Frequency Engineering Lecture #6 Engineering Approach

S-Parameters Analysis: Classical Relaxation-effect Model $S_{21R} = \frac{4k_R \cdot (1+jQ_{cR}) \cdot e^{-a_R \left(1+\frac{j}{Q_{cR}}\right)}}{\left[(1+k_R)+jQ_{cR}\right]^2 - \left[(1-k_R)+jQ_{cR}\right]^2 \cdot e^{-2a_R \left(1+\frac{j}{Q_{cR}}\right)}} \approx \frac{2(1+jQ_{cR})}{k_R \cdot \sinh\left[a_R \left(1+\frac{j}{Q_{cR}}\right)\right]}$ Approximation error : < 0.4% up to $a_R = 10$, frequency less than 12 THz

Radio Frequency Engineering Lecture #6 Engineering Approach

.

Screening Effectiveness Calculations-Error using Approximation

Radio Frequency Engineering Lecture #6 Engineering Approach **Screening Effectiveness Calculations** Classical Relaxation-effect Model $SE_{dBR} \cong 10 \log_{10} \left(\frac{8 \left(1 + Q_{cR}^2 \right) / k_R^2}{\cosh(2a_R) - \cos(2a_R / Q_{cR})} \right)$ dB SE Shielding Effectiveness 112 Classical Skin-effect Model $SE_{dBo} \cong 10 \log_{10} \left(\frac{16 / k_o^2}{\cosh(2a_o) - \cos(2a_o)} \right)$ 92 72-Less shielding as 52 frequency increases and/or 10.0 7.5 7.5 5.0 thickness decrease 5.0 2.5 Normalized Thickness, a_R 2.5 Frequency, f THz 0.0 Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授 UT-PS(

Radio Frequency Engineering Lecture #6 Engineering Approach Absorptance Calculations: Error using Classical Skin-effect $E_{ABdB} = \frac{AB_{dBo} - AB_{dBR}}{AB_{dBR}} \cdot 100\%$ 12.5 \approx 14% at T = $10\delta_{SR}$ Absorptance Error Example 9 2. $\omega \tau \cong 2.046$ Thickness invariant above $a_R \approx 3$ 10.0 Normalized Thickness, ap 0.0 0.0 Frequency, f THz Imperial College ステファン・ルシズィン Stepan Lucyszyn London インペリアル・カレッジ・ロンドン准教授 **UT-PS**

Comparison of modelled parameters for gold at room temperature, at 5.865 THz, determined from theory, direct ABCD parameter matrix calculations and synthesized equivalent transmission line models using commercial circuit simulation software

		Synthesized Transmission Line				
Parameters	Theory	$(N = 400 \ sections \ per \ wavelength)$				
$a_R = 5$, $\omega \tau = 1$, $Z_T = \eta_o$		ABCD Parameter Matrix Calculations		Microwave Office®		
		Value	Error [%]	Value	Error [%]	
$Z_{SR}[\Omega]$	0.4607904263 +j1.112446496	0.4607904255 +j1.112446495	-1.7×10^7 -0.9×10^7			
$\gamma_R \cdot 5\delta_{SR} [5\delta_{SR}^{-1}]$	5.0000 +j2.0711	5.0242 +j2.0807	+0.484 +0.464			
$S_{21R} \cdot 10^{5}$	5.349 -j6.725	5.309 -j6.699	-0.748 -0.387	5.308 -j6.697	-0.766 -0.416	
$\forall S_{21R}[\circ]$	-51.499	-51.602	+0.200	-51.6	+0.196	
Screening Effectiveness [dB]	81.317	81.363	+0.057	81.36	+0.053	
S _{11R}	-0.9975	-0.9975	0.000	-0.9975	0.000	
Return Loss [dB]	0.02124	0.02124	0.000	0.02124	0.000	

Imperial College London ステファン・ルシズィン Stepan Lucyszyn インペリアル・カレッジ・ロンドン准教授

Radio Frequency Engineering Lecture #6 Engineering Approach

- Conclusions An electrical engineering approach to the modelling of specific electromagnetic problems • at THz frequencies is introduced, using 5 interrelated concepts (transmission line modelling, kinetic inductance, Q-factor, complex skin depth and boundary resistance coefficient).
- The Engineering Approach has 5 main advantages:
 - Excellent pedagogical tool
 - Greatly reduces otherwise lengthy mathematical derivations
 - Reduces risk of introducing mistakes
 - Avoids the need for poor approximations
 - Can replace the need for slow numerical computations (with simple structures)
 - Gives new perspectives and deeper insight
- While the focus has been on the characterization of normal metals (magnetic and non-. magnetic) at room temperature, it is believed that the same methodology may also be applied to metals operating in anomalous frequency-temperature regions, superconductors, semiconductors, carbon nanotubes and metamaterials.

